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Figure 1.  Schematic for the Transport Reactor Development Unit.
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Figure 2.  Simulation of Wyodak coal case predicting the influence of air/coal ratio on the
temperature (——) and product gas velocity ().
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Figure 3.  Simulation of Wyodak coal case predicting the influence of air/coal ratio on the
carbon conversion via combustion, gasification, and devolatilization processes.
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Figure 4.  Simulation of Wyodak coal case predicting the influence of air/coal ratio on the
product gas heating value and composition including H2, CO, CO2, and H2O.
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Figure 5.  Simulation of Wyodak coal case predicting the influence of heat loss on the
carbon conversion via combustion, gasification, and devolatilization processes.
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Figure 6.  Simulation of Wyodak coal case predicting the influence of heat loss on the
temperature (——) and product gas velocity ().
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Figure 7.  Simulation of Wyodak coal case predicting the influence of heat loss on the
product gas heating value and composition including H2, CO, CO2, and H2O.
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Figure 8.  Simulation of Illinois #6 coal predicting the influence of air/coal ratio on the
temperature (——) and carbon conversion ().
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Figure 9.  The predicted influence of coal reactivity factor, K, on carbon conversion via
gasification using test conditions for the Illinois #6 test case at 1311 K and varying solids
residence times.
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 Figure 10.  TRDU flow regime map as estimated from Bi and Grace (1995) using Illinois
# 6 test conditions and resulting solid and gas flow rates, dp=175 µ, and ρs=1.4 g/cc.  Vmp

is the velocity limit for minimum ∆P, Vca is the velocity limit for core-annular flow, and
Vcc is the velocity limit for classical choking.
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